Ribozyme stability, exon skipping, and a potential role for RNA helicase in group I intron splicing by Coxiella burnetii.

نویسندگان

  • Linda D Hicks
  • Indu Warrier
  • Rahul Raghavan
  • Michael F Minnick
چکیده

The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ∼15 days for L1917 and ∼5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ∼11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unique group I intron in Coxiella burnetii is a natural splice mutant.

Cbu.L1917, a group I intron present in the 23S rRNA gene of Coxiella burnetii, possesses a unique 3'-terminal adenine in place of a conserved guanine. Here, we show that, unlike all other group I introns, Cbu.L1917 utilizes a different cofactor for each splicing step and has a decreased self-splicing rate in vitro.

متن کامل

A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.

Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very s...

متن کامل

DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.

DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous re...

متن کامل

Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes.

Analysis of RNA that can be labeled with GTP indicates the existence of group I introns in genes of at least three transcriptional classes in the genome of Staphylococcus aureus bacteriophage Twort. A single ORF of 142 amino acids (Orf142) is interrupted by three self-splicing group I introns, providing the first example of a phage gene with multiple intron insertions. Twort Orf142 is encoded i...

متن کامل

Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences.

A circularly permuted self-splicing group I intron from Anabaena was used to generate covalently closed circular trans-acting ribozymes in Escherichia coli. The RNA component of Bacillus subtilis RNaseP and an artificial trans-acting hepatitis delta virus ribozyme were expressed as the exon portion of the permuted intron. RNA isolated from these cells contained circular forms of the ribozymes, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 193 19  شماره 

صفحات  -

تاریخ انتشار 2011